A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic
نویسندگان
چکیده
The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.
منابع مشابه
Antitumor efficacy of a novel CLA-PTX microemulsion against brain tumors: in vitro and in vivo findings
BACKGROUND Considering the observations that linoleic acid conjugated with paclitaxel (CLA-PTX) possesses antitumor activity against brain tumors, is able to cross the blood-brain barrier, but has poor water solubility, the purpose of this study was to prepare a novel CLA-PTX microemulsion and evaluate its activity against brain tumors in vitro and in vivo. METHODS The in vitro cytotoxicity o...
متن کاملAntitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX) on B16-F10 melanoma
In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid-paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic ana...
متن کاملMulti-small molecule conjugations as new targeted delivery carriers for tumor therapy
In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX) as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6)-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX) and...
متن کاملIn vitro evaluation on novel modified chitosan for targeted antitumor drug delivery.
In this study, a novel amphiphilic copolymer designed as N-octyl-N-phthalyl-3,6-O-(2-hydroxypropyl) chitosan (OPHPC) were synthesized and then conjugated with folic acid (FA-OPHPC) to produce a targeted drug carrier for tumor-specific drug delivery. OPHPC and FA-OPHPC were characterized by FT-IR, (1)H NMR, (13)C NMR and elemental analysis. Paclitaxel (PTX) loaded OPHPC micelles (PTX-OPHPC) with...
متن کاملInvestigation of drug release from paclitaxel loaded polylactic acid nanofibers
Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated. Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...
متن کامل